Universal Payment Channels

Jehan Tremback
jehan.tremback@gmail.com

November 2015
v0.4

Abstract

Payment channels are a type of private ledger, backed by assets held by
a bank, payment processor, or blockchain. In this paper, we use payment
channels to specify a payment network which allows for instant transfers
of conventional currencies, cryptocurrencies, and any other kind of asset
which can be owned without physical possession.

The network can, in many circumstances, convert one asset type into
another without using exchanges. For example, Dollars to Dogecoins, or
Bitcoins to grain futures. Payments are made directly between nodes
in the network, without involving the entities or blockchains backing it.
This greatly reduces load on these entities and blockchains, allowing for
massive scalability.

The heart of this network is the Reactive Payment Routing (RPR)
protocol, based on the packet routing protocols that power the internet.
RPR allows the network to automatically find the cheapest route for any
payment. Because of this, RPR is also able to find the best exchange rate
between any two asset types used on the network.

UPC’s payment channels also can process Turing-complete “smart con-
ditions”, making the network extensible and allowing developers to create
a new class of payment channel applications.

Introduction

This paper concerns a payment network called Universal Payment Channels, or
UPC. UPC can handle transfers of any type of conventional or crypto currency,
as well as physical or virtual goods, as long as these goods can be considered
owned without physical possesion and kept in escrow. Furthermore, UPC routes
payments across stores of value, with the network automatically arriving at the
market exchange rate.

The vast majority of UPC payments are made without interfacing with any
third party ledger, such as a bank or blockchain. This means that there can be
an almost unlimited amount of payments that do not put any strain on bank
servers, or add anything to the blockchain. The only time that the bank or the
blockchain is involved is when a network participant wants to take money out
of the network, or put money into it.

This makes it very easy for application developers to interface with UPC.
Instead of interfacing with a bank or payment processor, the only thing that
an application needs to do is to send cryptographically signed messages on
behalf of the user. For example, there is software in development using UPC
to allow internet backbone routers to pay one another per-packet, many times
each second. These payments can be sent or received in dollars, Dogecoins, or
any other currency. Even though the volume of payments created by this type
of software is oceanic, the banks and blockchains backing up the network are
rarely contacted.

UPC consists of a series of “channels” between network participants. A chan-
nel is a private ledger arrangement between any two parties and a blockchain,
a bank, or some other kind of institution. It allows the parties to exchange
payment trustlessly, by sending updated ledger balances to one another (not to
the bank or blockchain). At any time, each of the participants can be confident
that they will be able to retrieve every cent or Satoshi that they are owed.

UPC’s key innovation is Reactive Payment Routing (RPR), a routing proto-
col inspired by the protocols that power the internet. UPC uses RPR to route
payments across interconnected channels, finding the cheapest path.

The Internet is a packet-switched network. Any computer on the Internet
can reach any other computer, and the network grows organically and routes
around damage. Routing protocols ensure that each packet takes the fastest
path through the network.

UPC is a payment-switched network. Any network participant can pay any
other, and UPC grows organically and routes around damage. UPC ensures
that each payment takes the cheapest path through the network.

Related work

Payment channels are, at root, based on the idea of commercial credit. One of
the main purposes of commercial credit is to allow two parties to consolidate
a large number of smaller payments into one larger payment which is made
periodically. Clearinghouses extend this instrument by placing funds in escrow
so that two parties can exchange a large number of transactions without having
to trust each other.

Some of the first formalization of the role of a clearinghouse into the concept
of a payment channel occurred in the Bitcoin community with Mike Hearn’s
work on micropayment channels[2][3], Alex Aakselrod’s work on chained mi-
cropayment channels[4] and C. J. Plooy’s system Amiko Pay[5]. Further inno-
vation appeared with Poon and Dryja’s Lightning Network[7] and Decker and
Wattenhofer’s Duplex Channels[6]. All of these protocols are designed for Bit-
coin, whose limited scripting capabilities demand complicated specifications.
Interledger|[1] is the only protocol we know of specifying a multihop payment
channel system generalized across stores of value. It is a bit more complex than
the protocol in this paper, but includes a formal specification. Zackary Hess’s
work in Flying Fox[11] deserves special mention, because his channel specifica-
tion forms the basis of the one in this paper.

None of the above work includes the two key innovations in this paper:

Turing-complete Smart Conditions (“smart contracts” are a similar concept),
and the Reactive Payment Routing (RPR) protocol, which is necessary for an
actual working payment network. RPR is partially based on Ad hoc On-Demand
Distance Vector Routing (AODV)[8], however it is simpler and provides full
network anonymity for all nodes participating in a payment route.

1 Basic channel

A channel is created when two parties create and sign an Opening Transac-
tion to put money from both parties in escrow with an institution such as a
bank, or lock up coins on a blockchain. The money is put into escrow with the
understanding that at some point in the future it will be transferred back to
the parties upon receipt of an Update Transaction signed by both parties.
This Update Transaction has a special number on it called a “nonce”, and
specifies two additional actions to take before transferring the funds back to the
parties:

1. Adjust the amounts that both parties have in escrow, lowering one amount
and raising the other by the same amount. This effectively transfers funds
from one party to the other.

2. Wait for a certain Hold Period before releasing the funds to back to
the parties. If someone gives you another Update Transaction signed
by both parties, and this transaction’s nonce is higher, throw the current
Update Transaction out and use the new one, restarting the Hold
Period.

Alice and Bob exchange Update Transactions back and forth, changing
the amount of funds to be transferred to make payments to one another. Each
time they make a new Update Transaction, they increment the nonce. To
accept a payment, both of them sign it.

e If Bob disappears, Alice can post the last signed Update Transaction
and collect the money owed her without Bob’s involvement, after the hold
period is over.

e If Bob tries to cheat by posting an old Update Transaction where he’s
doing better than he is currently, Alice can post the latest Update Trans-
action, which will override the old one. As long as Alice checks whether
Bob has posted an old Update Transaction at least once every Hold
Period, she can post the latest Update Transaction and stop him from
cheating.

1.1 Opening Transaction

A channel is opened with an Opening Transaction. The Opening Trans-
action serves to identify the channel and the parties, and place the money in
escrow. This could be sent to a bank, or supplied to a smart contract on a
blockchain.

Opening Transaction:

Party 1: Public key or other signature verification infor-
mation for one of the participants.

Party 2: Public key or other signature verification infor-
mation for the other participant.

Amount 1: The amount of money that Party 1 has placed
in the channel

Amount 2: The amount of money that Party 2 has placed
in the channel

Signature 1: Party 1’s signature on Opening Transaction

Signature 2: Party 2’s signature on Opening Transaction

1.2 Update Transaction

Update Transactions are sent back and forth between Party 1 and Party 2
and serves to transfer the money. Only the last of these Update Transactions
should be posted to the bank or blockchain. When an Update Transaction
is posted, it always results in the closure of the channel (whether it is honored,
or a higher-nonced Update Transaction is honored).

Update Transaction:

Nonce: A number which is incremented with each new Up-
date Transaction.

Net Transfer Amount: The amount of money to transfer
from Party 1 to Party 2 (can be negative).

Hold Period: An amount of time (or number of blocks) to
wait before closing the channel and transferring funds,
after a Update Transaction has been published

Signature 1: Party 1’s signature on Update Transaction

Signature 2: Party 2’s signature on Update Transaction

1.2.1 Making payments

To make payments to one another, Alice and Bob pass signed Update Trans-
actions back and forth.

If Alice wants to pay Bob, she adjusts the Net Transfer Amount, signs
the Update Transaction, then passes it to Bob. None of this involves the
Update Transaction being shown to anyone else, and can happen instantly.
Alice and Bob can do this as many times as they want.

To actually claim the funds, either party posts the latest Update Trans-

action. After Hold Period is over, the channel closes: the Net Transfer
Amount is subtracted from Amount 1 and added to Amount 2, and the
amounts are transferred back to the accounts of the participants.

This means that if Alice disappears or becomes uncooperative, Bob can still
get his money out by posting the last valid Update Transaction he has and
waiting for the Hold Period to end.

1.2.2 Stopping cheaters

If a Update Transaction with a higher Nonce is published before the Hold
Period ends, it overrides the older Update Transaction.

If Bob tries to cheat by publishing an old Update Transaction where he
has a higher amount than he does currently, Alice can simply publish the newer
Update Transaction, which will have a higher Nonce.

Another option is to punish Bob by transferring all his funds to Alice if she
is able to post a higher-nonced Update Transaction after him. This makes a
cheating attempt riskier and may be beneficial in some situations.

2 Smart Conditions

Smart Conditions are pieces of Turing-complete code that are evaluated by
the bank or blockchain during the Hold Period. They can return either true or
false when supplied with a piece of data, which is referred to as a Fulfillment.
They have an associated Conditional Transfer Amount, which is added to
the channel’s Net Transfer Amount if the Smart Condition returns true.

Update Transactions can have a list of Smart Conditions. A Smart
Condition consists of the Conditional Transfer Amount and the Function
which takes an argument and returns either true or false. The Function does
not have any side effects, it is a pure function.

Update Transaction:

Nonce: A number which is incremented with each new Update
Transaction.

Net Transfer Amount: The amount of money to transfer from
Party 1 to Party 2 (can be negative).

Hold Period: An amount of time (or number of blocks) to wait
before closing the channel and transferring funds, after an
Update Transaction has been posted.

Conditions:
1:
Conditional Transfer Amount: Add this to the

channel’s Net Transfer Amount if Func-
tion returns true.

Function(argument): Takes an argument and re-
turns either true or false

Pieces of data called Fulfillments can be posted during the Hold Period.
These act to “fulfill” the “conditions”. Fulfillments only need to be signed by
one of the channel participants.

Fulfillment:
Condition: Which condition does this fulfill?

Argument: Data with which to evaluate the Smart Con-
dition.

When a Fulfillment is posted, it is evaluated by the corresponding Smart
Condition. If the Smart Condition evaluates to true, the Conditional
Transfer Amount is added to the channel’s Net Transfer Amount, and the
Smart Condition is removed from the list.

2.1 Gas

Notice that one channel participant could send the other a Smart Condition
that resulted in an infinite loop or other excessive use of resources. Blockchain-
based smart contract systems like Ethereum[9] or Tendermint[10] use a concept
of “gas” where each step of code execution costs a small amount. Execution
aborts if there is insufficient gas. Such a gas scheme could be specified here, but
we believe that it is an implementation detail, and outside of the scope of this
specification.

Whatever the gas scheme used, nodes could be required to pay gas upon

posting a Fulfillment. This way incentives are aligned so that the party who
would like a certain condition evaluated pays for it.

2.2 Using Smart Conditions

Smart Conditions can be used to implement complex logic over channels to
give them enhanced capabilities. Here is how Alice and Bob would implement a
“hashlock” Smart Condition. Specifically, Alice wants to guarantee that she
will transfer 32 coins to Bob if he can supply a string (referred to as a Payment
Secret) that hashes to “69A1904325CCB”. Alice is Party 1 and Bob is Party
2.

Alice to Bob

Update Transaction:
Nonce: 12
Net Transfer Amount: -34
Hold Period: 8

Conditions:
1:
Conditional Transfer Amount: 32
Function(secret):
if sha3(secret) is equal to

"59A1904325CCB", return true;
else return false

Signature 1: Alice’s signature on Update Transaction

2.2.1 Closing the channel

If Bob wants to close the channel at this point, he posts the Update Transac-
tion, along with his and Alice’s signatures. To fulfill the Smart Condition and
have the Conditional Transfer Amount added to the channel’s Net Trans-
fer Amount, Bob must post a Fulfillment that causes the Smart Condition
to return true during the Hold Period. Note that the Fulfillment only needs
to be signed by the party posting it.

Along with the above Update Transaction, Bob posts

Fulfillment:
Condition: 1
Argument: “theSecret”

Signature: Bob’s signature on Fulfillment

2.2.2 Fulfilling the condition without closing the channel

Of course, most of the time Bob doesn’t want to close the channel right away.
Bob can now prove that he could unlock the money if he wanted, so Alice
might as well adjust the channel’s Net Transfer Amount as specified by the
Smart Condition. Bob sends the Payment Secret to Alice, who adjusts the
channel’s Net Transfer Amount, increments the Nonce, removes condition
1, and signs a new Update Transaction.

Bob to Alice

Fulfillment:
Condition: 1
Argument: “theSecret”

Signature: Bob’s signature on Fulfillment

Both sign

Update Transaction:
Nonce: 13
Net Transfer Amount: -2
Hold Period: 8
Signature 1: Alice’s signature

Signature 2: Bob’s signature

2.2.3 Canceling the condition

Similarly, Bob can inform Alice that he will never be able to provide the secret.
In this case there is no reason for them to keep passing a condition that will never
be fulfilled back and forth. Bob simply makes a new Update Transaction,
without the Smart Condition.

Both sign

Update Transaction:
Nonce: 13
Net Transfer Amount: -34
Hold Period: 8
Signature 1: Alice’s signature on Update Transaction

Signature 2: Bob’s signature on Update Transaction

3 Multihop payments

With the help of a hashlock condition, it is possible to trustlessly route payments
across multiple hops. Let’s say that Alice would like to transfer some funds to
Charlie, but she does not have a channel open with him. If she has a channel
with Bob, and Bob has a channel with Charlie, the funds can be transferred.

First, Alice sends a Payment Secret to Charlie:

Alice to Charlie

Payment Secret: “theSecret”

Then, Alice sends a hashlocked payment to Bob:

Alice to Bob

Update Transaction:
Nonce: 13
Net Transfer Amount: -2
Hold Period: 8
Conditions:
1:
Conditional Transfer Amount: -101

Function(secret):
if sha3(secret) is equal to
"73B88F8C24EAA", return true;
else return false

Signature 1: Alice’s signature on Update Transaction

Notice that Alice has sent Bob 101 coins instead of 100, as Bob charges her
a 1% fee for routing payments.

Now, Bob sends the payment along to Charlie (Bob is Party 1 and Charlie
is Party 2 in their channel):

Bob to Charlie

Update Transaction:
Nonce: 42
Net Transfer Amount: 56
Hold Period: 10

Conditions:
1:
Conditional Transfer Amount: 100
Function(secret):
if sha3(secret) is equal to

"73B88FB8C24EAA", return true;
else return false

Signature 1: Bob’s signature on Update Transaction

To claim the payment, Charlie can post this Update Transaction, along
with the Payment Secret that Alice sent him.

Charlie posts

Update Transaction:
Nonce: 42
Net Transfer Amount: 56
Hold Period: 10

Conditions:
1:
Conditional Transfer Amount: 100
Function(secret):
if sha3(secret) is equal to

"73B88F8C24EAA", return true;
else return false

Signature 1: Bob’s signature on Update Transaction

Signature 2: Charlie’s signature on Update Transaction

10

Charlie also posts

Fulfillment:
Condition: 1
Argument: “theSecret”

Signature: Charlie’s signature on Fulfillment

Once Charlie has posted the Update Transaction, Bob is able to see the
Payment Secret and unlock his hashlocked funds from Alice. In this way, a
network of nodes are able to exchange payment trustlessly with one another.
One interesting aspect of this system is that while Alice and Bob both need to
have channels open with the same blockchain or bank, and Bob and Charlie need
to have channels open with the same blockchain or bank, Alice and Charlie do
not. As long as the banks involved banks are willing to hold money in escrow
and honor Update Transactions for their customers, and the blockchains
involved are able handle the smart contract logic to do the same, a payment
network can be created that spans banks and blockchains.

4 Multihop payments across currencies

In the multihop payment example above, it is not necessary for Alice and Bob’s
channel to be with the same bank or blockchain as Bob and Charlie’s channel.
It’s actually not even necessary for the channels to be denominated using the
same store of value.

If Alice wants to send Charlie some Euros, and Charlie and Bob have a Euro
channel open, it can be done. Alice needs to know how many dollars she needs
to send Bob to have him send Charlie the right number of Euros (this can also
be calculated from Bob’s exchange rate and fee). Alice sends the hashlocked
dollars to Bob, and Bob sends hashlocked Euros to Charlie. If Charlie is happy
with the number of Euros he will receive (which may depend on whether he
receives a market exchange rate and intermediaries charge a fair fee), he reveals
the Payment Secret to Bob as usual.

This can also be used to connect two parties transacting in the same cur-
rency, across hops of another currency. Let’s say that Alice wants to send
dollars to Doris, but her only connection to Doris is through Bart and Conrad,
who have a channel open on the Dogecoin blockchain. If Alice knows Bart’s
fee and exchange rate, and Conrad’s fee and exchange rate, she can calculate
whether it would be worth it to send Doris payment across Bart and Conrad’s
Dogecoin channel. This technique could be very powerful for providing payment
connectivity between separate groups of people using non-crypto currency chan-
nels, as it will probably be a lot quicker to open a channel on a blockchain vs
with a bank. Enterprising individuals can identify parts of the network lacking
connectivity and supply it, earning transaction fees for their efforts.

11

5 Routing multihop payments

If you're going to have a multihop payment network, you need some way to route
payments. How does Alice know that Bob is the best person to go through to
reach Charlie? Perhaps Benjamin also has channels open with Alice and Charlie
but he charges a lower fee. There needs to be some way to find the lowest-priced
route to a payment’s destination. This problem is very similar to the problem
of routing packets on the internet, so we will look at some possible solutions
from that domain.

There are two main categories of ad-hoc routing protocols— proactive and
reactive. Proactive protocols work by exchanging messages to build up routing
tables listing the next hop for each address on the network. When a node
receives a packet, it is immediately able to forward it along to the best peer
to get it closer to its destination. However, every node needs to have an entry
in its routing tables for every other node. On a large network, this becomes
infeasible.

In reactive protocols, nodes request a route from the network when they
need to send packets to a new destination. This means that it is not necessary
for every node to store information on every destination, and it is not necessary
to update every node on the network when a connection changes. Of course,
the downside is that the initial route discovery process adds some unavoidable
latency when sending to new destinations.

For most payments, a few hundred milliseconds to establish a route is not
a huge deal. Needing to store a routing table entry for every address in the
network is far worse. For this reason we’ll use a variation of Ad hoc On-Demand
Distance Vector Routing (AODV) [8], a reactive routing protocol.

In AODV, when nodes need to send a packet to a destination they have
never sent a packet to, they send out a Route Request Message, which is
flooded through the network (with some optimizations). When the destination
receives this message, it sends a Route Reply Message. Intermediary nodes
along the path cache the next hops for the source and the destination, thereby
storing only the routing information they are likely to need often.

5.1 Reactive Payment Routing

Since our nodes are presumed to already have connectivity, we can skip the
Route Request Message. Our protocol has only one type of message, which
we’ll call the Routing Message. A node’s neighbors are those nodes that it
has payment channels open with.

When a node (which we’ll refer to as the source) wishes to send a multihop
payment, it first sends a Payment Initialization to the destination of the
payment.

12

Source to destination

Payment Initialization:
Secret: Payment secret.

Amount: Amount of payment.

The destination then constructs a Routing Message. The routing message
includes the hash of the payment secret, and the amount of the payment. It
sends the Routing Message to all of its neighbors who have enough in their
channels to cover the payment (if Dolores is trying to receive $100, she won’t
send the Routing Message to Clark, who only has $20 in his side of the
channel).

Destination to neighbors

Routing Message:
Hash: Hash of payment secret.

Amount: Amount of payment.

When a node receives a Routing Message, the node makes a new Routing
Table Entry.

Saved in routing table

Routing Table Entry:
Hash: Hash of payment secret.
Amount: Amount of payment.

Neighbor: The neighbor that the Routing Message came
from.

The node also sends the Routing Message along to neighbors with enough
to cover the payment, but not before adjusting the Amount. To adjust the
Amount, the node adds the fee that it would like to recieve for routing the
payment. Also, if the node is sending the Routing Message to a neighbor with
whom it has a channel open in a different currency, the Amount is converted
to that currency.

13

Routing Message:
Hash: Hash of payment secret.

Amount: (payment + fee) * exchange_rate

The Routing Message can be thought of as asking one implicit question:
“How much would someone have to send you for you to send me Amount?”
By adjusting the amount, a node is informing the network how much it charges
to transfer money, and consequently, how good the route that it is on is. The
Routing Table Entry makes sure the node routes the actual payment cor-
rectly, if it is on the winning route.

If a node receives a Routing Message with the same Payment Secret
hash again, it will compare the Amount of the new Routing Message with
the Amount that it has stored in its Routing Table. If the Amount of the
new Routing Message is lower than what is in the Routing Table, it will
update the Routing Table and send out a new Routing Message.

The Routing Messages propagate until they reach the source of the pay-
ment. At this point, the source can continue to wait, because it may receive
another Routing Message with a lower Amount. If the source is satisfied
with the Amount, it then uses the Payment Secret hash to make a hashlocked
payment to the neighbor that sent it the routing message. This neighbor then
checks their routing table and makes a payment to their corresponding neighbor.
The hashlocked payments continue until they reach the destination, at which
point it unlocks the payment with the secret, letting the rest of the chain unlock
their payments as well (as explained in “Multiphop Channels” above).

14

1.

o theSecret,

Alice sends Doris the Payment Secret. It can be anything, as long RN $100 | T
as only Alice and Doris know it. She also sends the intended :
Amount of the payment. : 2 .

Doris hashes the
Payment Secret to
generate the Hash.

Esteban
Fee=1%
$:€=0.85

hash(theSecret) =
xyz123

hash next hop | amount
= § ?1%1423 xyz123 Doris $100
L S =) R) P —
hash next hop | amount
hash next hop | amount xyz123 Doris $100
XyZ123 Chartie $16 “‘ $)
xyz123 | Esteban | €85.85 ¢ xyz123, xyz123,
$104 $100
4. TTreecil [chatie \gq---c"7 3.

Fee =4%

Doris sends the Hash and the Amount to her neighbors
Esteban and Charlie in a Routing Message. Esteban and
Charlie both apply their fees (and exchange rates) to the

Charlie’s Routing Message reaches Bob first, and he creates a routing
table entry and sends a Routing Message to Alice. When Esteban’s
message arrives, Bob sees that it has a lower Amount and replaces

Charlie’s Routing Message. He also sends Alice an updated Routing Amount, and send it to Bob. Note that nobody is able to tell
Message. Note that Bob is has no way of knowing that Alice originated whether Doris created the Routing Message, or is simply
the payment. forwarding it along.

e Routing Message 49 Payment Secret

Figure 1: Finding a payment route

15

5.

Alice is happy to send $104 for Doris to receive $100, so she sends a payment
hashlocked with the Payment Secret to Bob, who sent her the Routing Message offering
this price.

A, Xyz123,
=4 e85.85

€

hash

next hop

amount

xyz123

Doris

$100

Esteban

Fee =1%
$:€ =0.85

A, Xyz123,
A

$

hash next hop | amount

Xyz123 fre $104

xyz123 Esteban €85.85

6.

Bob checks his Routing Table and sees that the payment should go to
Esteban. He also checks that the Amount is sufficient for him to make a
profit at the price that Esteban requires. Note that Bob has no way of
knowing that Alice originated the payment.

@ Hashlocked Payment 4/9) Payment Secret

4/@ theSecret %@ theSecre

$100

7.

Esteban checks his
Routing Table as
well and sends a
hashlocked payment
to Doris.

8.

Doris unlocks Esteban’s hashlocked payment, releasing the

Payment Secret to him. Esteban uses it to unlock Bob’s
payment, and Bob uses it to unlock Alice’s payment. At this
point, the payment is complete.

Figure 2: Sending a hashlocked payment along a route

16

Glossary

Conditional Transfer Amount An amount included in Smart Conditions,
which is added to the channel’s Net Transfer Amount if a Fulfillment
is posted which causes the Smart Condition to return true. 5-7, 17, 18

Fulfillment A piece of data to be evaluated by a Smart Condition. This
can be posted at any time during the Hold Period, and only needs to be
signed by one of the parties. 5-8, 11, 17, 18

Hashlock Condition A Smart Condition that hashes its argument, usually
a Payment Secret and compares the hash to a prespecified string. If it
matches, the Smart Condition returns true and adds its Conditional
Transfer Amount to the channel’s Net Transfer Amount. 17

Hold Period A time period included the Update Transaction. The bank or
blockchain must wait this amount of time before transferring any money
when the channel is closed. This provides a chance for one of the parties to
counteract a cheating attempt where the other party posts an old Update
Transaction. If a newer Update Transaction with a higher Nonce is
posted before the Hold Period is over, it will override the older one. 3,
57,17, 18

Net Transfer Amount An amount included in Update Transactions which
specifies how much money to transfer from Party 1 to Party 2 when the
channel closes. If it is negative, funds are transferred in the other direction.
4-8,17, 18

Nonce An integer included the Update Transaction which is incremented
with each new Update Transaction. This is used by the bank or the
blockchain to ascertain the ordering of Update Transactions. An Up-
date Transaction with a higher Nonce will always override one with a
lower Nonce. 5, 8, 17

Opening Transaction A message signed by both parties that creates a chan-
nel. This is posted to the bank or blockchain and serves to identify the
parties and place funds in escrow. 3, 4

Payment Secret A secret shared between the source and destination of a mul-
tihop payment. It is hashed and used to create Hashlock Conditions
between all the intermediary nodes involved in the multihop payment. The
destination reveals it to the last intermediary node to claim the payment,
and the last intermediary nodes reveals it to the second-to-last and so on
back to the source. 7-11, 14, 17

Routing Message A message propagated between nodes as part of the routing
protocol. It contains the hash of the Payment Secret and an Amount,
which is added to by each node that propagates it. 12-14, 18

17

Routing Table A table maintained by each node that records Routing Mes-
sages received and forwarded by that node. It is used to route the pay-
ment corresponding to a given Routing Messages. 14

Smart Condition A piece of Turing-complete code included in the Update
Transaction that is evaluated by the bank or blockchain during the Hold
Period. It can return either true or false when supplied with a Fulfill-
ment. It has an associated Conditional Transfer Amount, which is
added to the channel’s Net Transfer Amount if the Smart Condition
returns true. 3, 5-8, 17, 18

Update Transaction A message signed by both parties that updates the state
of a channel. This is posted to the bank or blockchain to close the channel,
however an infinite number of them can be exchanged between the two
parties before then. 3-11, 17, 18

Acknowledgements

Zackary Hess, for coming up with much of the definition of the Basic Channel
as part of Flying Fox[11], a channel-based cryptocurrency and prediction market.
Jae Kwon, for years of advice and guidance on the theory, implementation, and
philosophy of cryptocurrency. Anke Tremback, for editing the first complete
draft of this paper. Alice Townes, for editing and feedback from a legal and
finance perspective.

References

[1] A Protocol for Interledger Payments
Stephan Thomas, Evan Schwartz
https://interledger.org/interledger.pdf
2015

[2] Micropayment Channel
Bitcoin Wiki Contributors
https://bitcoin.org/en/developer-guide#micropayment-channel
2014

[3] [ANNOUNCE] Micro-payment channels implementation now in bitcoinj
Mike Hearn
https://bitcointalk.org/index.php?topic=244656.0
2013

[4] Decentralized networks for instant, off-chain payments
Alex Akselrod
https://en.bitcoin.it/wiki/User:Aakselrod/Draft
2013

[5] Amiko Pay
C. J. Plooy

18

[11]

http://cornwarecjp.github.io/amiko-pay/doc/amiko_draft_2.pdf
2013

A Fast and Scalable Payment Network with Bitcoin Duplex Micropayment
Channels

Christian Decker, Roger Wattenhofer
http://www.tik.ee.ethz.ch/file/716b955c130e6c703fac336eal7b1670/
duplex-micropayment-channels.pdf

2015

The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments
Joseph Poon, Thaddeus Dryja
https://lightning.network/lightning-network-paper.pdf

2015

Ad-hoc On-Demand Distance Vector Routing
Charles E. Perkins, Elizabeth M. Royer
https://www.cs.cornell.edu/people/egs/615/aodv.pdf

A Next-Generation Smart Contract and Decentralized Application Platform
Vitalik Buterin
https://github.com/ethereum/wiki/wiki/White-Paper

2014

Tendermint: Consensus without Mining

Jae Kwon
http://tendermint.com/docs/tendermint.pdf
2015

Flying Fox

Zackary Hess
https://github.com/BumblebeeBat/FlyingFox
2015

19

